Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization.

Practical, high-yield lignin depolymerization methods could greatly increase biorefinery productivity and profitability. However, development of these methods is limited by the presence of interunit carbon-carbon bonds within native lignin, and further by formation of such linkages during lignin extraction. We report that adding formaldehyde during biomass pretreatment produces a soluble lignin...

متن کامل

Low-Power Microwave Radiation-assisted Depolymerization of Ethanol Organosolv Lignin in Ethanol/Formic Acid Mixtures

Ethanol organosolv lignin separated from bamboo was depolymerized by low-power microwave radiation (~80 W) using ethanol as a swelling agent and formic acid as a hydrogen donor solvent. After increasing the temperature from 100 to 200 °C, the total amount of phenolic compounds in the products increased from 8.1% to 40.8%, and both the weight average molecular weight (Mw) and number average mole...

متن کامل

Catalytic Depolymerization of Lignin and Woody Biomass in Supercritical Ethanol: Influence of Reaction Temperature and Feedstock

The one-step ethanolysis approach to upgrade lignin to monomeric aromatics using a CuMgAl mixed oxide catalyst is studied in detail. The influence of reaction temperature (200-420 °C) on the product distribution is investigated. At low temperature (200-250 °C), recondensation is dominant, while char-forming reactions become significant at high reaction temperature (>380 °C). At preferred interm...

متن کامل

Redox Catalysis Facilitates Lignin Depolymerization

Lignin is a recalcitrant and underexploited natural feedstock for aromatic commodity chemicals, and its degradation generally requires the use of high temperatures and harsh reaction conditions. Herein we present an ambient temperature one-pot process for the controlled oxidation and depolymerization of this potent resource. Harnessing the potential of electrocatalytic oxidation in conjugation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Green Chemistry

سال: 2015

ISSN: 1463-9262,1463-9270

DOI: 10.1039/c5gc01120e